Executive Summary

This is the thesis final report, which will provide 4 in depth analysis of the Educational Activities Building project, located at Penn State Harrisburg. From the technical assignment performed in the fall semester, four problems or opportunities were identified to improve the construction process of this project.

<u>Analysis 1: Alternative Roof System (Green Roof) -</u> An opportunity for gaining more potential LEED credits to obtain LEED Silver Certification. An in depth research has been done on different green roof systems and the current roof system was investigated to ensure the structural stability when the green roof is added. As a result an extensive green roof system was chosen for the Educational Activities Building which would cover 16,000 SQFT of the roof area. The green roof will take 4 days to be installed with a total cost of \$181,120. This is a high initial cost for the new roof system; however the return on investment could be seen within the lifespan of the green roof. The biggest benefits are increased real estate value, stormwater management and reducing energy consumptions which results in utility savings.

<u>Analysis 2: MEP Systems Prefabrication/Modularization -</u>Prefabrication/Modularization is a critical industry issue that was considered for the Educational Activities Building project at the 22nd annual PACE Roundtable. MEP systems are the second most building systems that implement prefabrication. The prefabrication scope includes the main ductwork, electrical conduit and plumbing pipes. After a thorough research of this construction method and looking at case studies from previous project it was determined that MEP systems prefabrication will slice the schedule by 41 days. The original MEP systems completion day was 1/9/2014 but after the schedule reduction it was moved to an earlier date 11/13/2013. As for the implementation cost, the total labor savings is \$362,329.52 and the general conditions savings is \$130,238.14.

<u>Analysis 3: Structural Steel Sequencing-</u> it had been identified that there is a room for improvements in the steel sequence. Because it is on the critical path, many other tasks are dependent on it. To eliminate any potential delays, a new sequence plan is proposed, which will make the process more efficient, save 8 days from the project schedule and \$27,328.32.

<u>Analysis 4: Technology Integration for Information Management-</u> The owner of this project "Penn State" is one of the industry leaders when it comes to the use of BIM thanks to the Office of Physical Plant. BIM is heavily used on the Educational Activities Building project but there is a room for more BIM uses such as a project document management and building maintenance scheduling. Additionally, tablets and desktop stations will be used in the field to increase productivity. The cost for the tablets and desktop stations are between \$10,000 and \$13,000 with a general condition savings of \$2,565 per week which results in a \$164,160 savings over the entire project schedule. Acknowledgments

Academic

Penn State Architectural Faculty

Dr. Craig Dubler

Dr. Moses Ling

Dr. Kevin Parfitt

Dr. John Messner

<u>Industrial</u>

Special Thanks:

Mr. Adam Dent

Mr. Tim Sullivan

Ms. Natalie Gentile

Mr. Brian Shaffer

PACE Industry Members

My Family and Friends

Table of Contents

Abstract	i
Executive Summary	ii
Acknowledgments	iii
1.0 Project Background	1
1.1 Client Information	1
1.2 Project Delivery Method	1
1.3 Building Systems	2
1.4 Project Schedule	7
1.5 Project Cost Estimate	8
1.6 General Conditions Estimate	9
1.7 Site Layout Planning	11
1.8 Building Information Modeling Use Evaluation	11
2.0 Analysis 1: Alternative Roof System (Green Roof)	14
2.1 Problem/Opportunity Identification	14
2.2 Background Research	14
2.3 Potential Solutions	14
2.4 Methodology	15
2.5 Expected Outcome	15
2.6 Resources and Tools	15
2.7 Current Roof System Investigation	16
2.8 Green Roof Systems Research	17
2.9 Green Roof System Components	18
2.10 Chicago Case Study	19
2.11 Roof System Loads	20
2.12 Proposed Green Roof Design	21
2.13 Constructability Review	21
2.14 Summary	23
3.0 Analysis 2: MEP Modularization	24
3.1 Problem/Opportunity Identification	24
3.2 Background Research	24
3.3 Potential Solutions	25
3.4 Methodology	25
3.5 Expected Outcome	26
3.6 Resources and Tools	26
3.7 Multi-Trade Modularization Research	27

[FINAL REPORT] April 9, 2014

3.8 Case Studies	31
3.9 MEP Systems Prefabrication/Modularization Scope	33
3.10 Prefabrication Shops	38
3.11 Constructability Review	39
3.12 Schedule and Cost Savings	40
3.13 Summary	42
4.0 Analysis 3: Structural Steel Sequencing	43
4.1 Problem/Opportunity Identification	43
4.2 Background Research	43
4.3 Potential Solutions	43
4.4 Methodology	43
4.5 Expected Outcome	44
4.6 Resources and Tools	44
4.7 Current Structural Steel Sequence	45
4.8 Crane Selection	48
4.9 The Proposed Structural steel Sequence	51
4.10 Comparison	52
4.11 Schedule Impact and Cost Savings	52
4.12 Summary	53
5.0 Analysis 4: Technology Integration for Information Management	54
5.1 Problem/Opportunity Identification	54
5.2 Background Research	54
5.3 Potential Solutions	54
5.4 Methodology	55
5.5 Expected Outcome	55
5.6 Resources and Tools	55
5.7 Preliminary Analysis	56
5.8 Project Manager Interview	59
5.9 Case Studies	60
5.10 Cost of Implementation	64
5.11 Proposed Technology Integration Strategy	66
5.12 Summary	68
Resources	69
APPENDIX A- Original Detailed Project Schedule	72
APPENDIX B- Detailed Project Estimate	78
APPENDIX C- General Conditions Estimate	84
APPENDIX D- Site Plans	86
APPENDIX E- BIM Evaluation	90

	[FINAL REPORT]	April 9, 2014	
APPENDIX F- Crane Specification			93
APPENDIX G- Breadth Topics			100